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The present paper is the first part of a two-part report on a detailed investigation 
of periodic turbulent pipe flow. In  this investigation, experimental data on instan- 
taneous velocity and wall shear stress were obtained a t  a mean Reynolds number of 
50000 in a fully developed turbulent pipe flow in which the volumetric flow rate was 
varied sinusoidally with time around the mean. Two oscillation frequencies a t  
significant levels of flow modulation were studied in detail. The higher of these 
frequencies was of the order of the turbulent bursting frequency in the flow, and the 
other can be regarded as an intermediate frequency a t  which the flow still departed 
significantly from quasi-steady behaviour. While a few similar experiments have been 
reported in the recent literature, the present study stands out from the others in 
respect of the flow regimes investigated, the magnitude of flow modulation, the 
detailed nature of the measurements and most importantly the identification of a 
relevant parameter to characterize unsteady shear flows. The present paper contains 
the main experimental results and comparisons of these results with the results of 
a numerical calculation procedure which employs a well-known quasi-steady turbu- 
lence closure model. The experimental data are used to study the manner in which 
the time-mean, the ensemble-averaged and the random flow properties are influenced 
by flow oscillation a t  moderate to high frequencies. I n  addition, the data are also used 
to bring out the capability and limitations of quasi-steady turbulence modelling in 
the prediction of unsteady shear flows. A further and more detailed analysis of the 
experimental data, results of some additional experiments and a discussion on the 
characterization of turbulent shear flows are provided in Part 2 (Ramaprian & Tu 
1983). 

1. Introduction 
1.1. The problem introduced 

The study of unsteady or periodic turbulent shear flows is of practical significance 
because of their many important applications in aerodynamics (helicopter rotor-blade 
dynamics), turbomachinery, biofluid flows, sediment transportation, etc. Very little 
information is presently available on the structure of turbulence in such flows. It is 
therefore essential to perform some fundamental studies on unsteady turbulent shear 
flows. The fully developed periodic pipe flow in which the flow rate is forced to vary 
sinusoidally with time around a mean value represents one of the simplest flows under 
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this category. It is therefore a natural choice for basic studies of turbulence in 
unsteady flows. 

The problem of unsteady or periodic turbulent flow through a long circular pipe 
has been studied by several research workers experimentally as well as computa- 
tionally. Of these, the most comprehensive experimental studies are those of 
Mizushina, Maruyama & Shiozaki (1973) and Mizushina, Maruyama & Hirasawa 
(1975). I n  a series of recent papers, they have reported detailed measurements of vel- 
ocity, turbulence intensity and autocorrelation, a t  several frequencies of oscillation 
and a t  different mean Reynolds numbers. They found that imposed periodicity plays 
a significant role if the oscillation frequency is higher than a critical frequency. While 
instantaneous velocities were measured in these experiments, no specific comments 
were made by the authors on the effect of the imposed oscillations on the time-mean 
velocity profile in the flow. However, from a qualitative study of the plots of their 
phase-averaged velocity profiles, one gets the impression that the time-mean velocity 
is likely to  have been affected by oscillation at the higher frequencies they studied. 
The distortion of the time-mean velocity was also observed by Ramaprian & Tu (1980) 
in their experiments on oscillatory pipe flow a t  transitional Reynolds number. They 
observed that the time-mean profile exhibited an inflexion point. I n  the meanwhile, 
Ohmi et u2. (1976), Kita, Adachi & Hirose (1980) and Kirmse (1979) also reported 
experimental information on periodic pipe flow. These authors did not observe any 
inflexion point in the time-mean velocity profile. Instead, they concluded that the 
profile is essentially the same as that corresponding to  steady flow a t  the mean 
Reynolds number. 

Apart from the experimental data reported on oscillatory pipe flows, there has also 
been significant computational effort in this direction. For example, Ohmi, Kyomen 
& Usui (1978), Kita, Adachi & Hirose (1980) and Kirmse (1979) supplemented their 
experiments with numerical calculations. Others who reported computational studies 
of periodic pipe/channel flows are Vasiliev & Kvon (1971) and Acharya & Reynolds 
(1975). Most of these authors used, without much justification, simple extensions of 
steady-flow turbulence models to  close the equations. 

A review of the literature on periodic turbulent pipe flows indicates, that, while 
several experimental and numerical studies have been reported in the last 5 or 6 years, 
these studies have not led to any definite conclusions regarding the behaviour of 
turbulent shear flows under the influence of imposed periodic perturbation. While 
most of the experiments seem to indicate negligible effect of unsteadiness on the 
time-mean flow, there are a few experiments that  indicate the contrary. Direct 
wall-shear-stress measurements have rarely been made, and hence the effect of 
unsteadiness on the behaviour of this important quantity (such as its amplitude, 
phase and time-mean value) is uncertain. Until very recently, studies a t  oscillation 
frequencies large enough to interact with the turbulent structure had not been made. 
While data are now available at high frequencies, more are required. I n  any case, 
with the exception of the work of Mizushina and coworkers, there has been no attempt 
to classify the periodic flows based on the frequency and amplitude of oscillation. 
While there are a few studies a t  high oscillation frequency and very small amplitude 
and a few others a t  large amplitude but very low (almost quasi-steady) frequencies 
there are very few detailed experiments that  combine high frequencies and large 
amplitudes. Such conditions are often encountered in practice (e.g. aerodynamics of 
helicopter rotor blades). Also parameters such as Strouhal number and Stokes number 
have generally been used to characterize the unsteady turbulent flow. This practice, 
which has been borrowed from classical laminar unsteady-flow theory, has been found 
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to be inadequate (e.g. Ramaprian & Tu 1980) for turbulent flows. Alternative ways 
to characterize unsteady turbulent flows must be found. On the computational side, 
time-dependent calculations have been made using extensions of steady flow turbu- 
lence models in a quasi-steady manner without a careful study of their implications 
a t  different flow regimes. 

1.2. Objectives of the present study 

The earlier work of Ramaprian & Tu (1980) indicated the possibility that the 
time-mean behaviour of periodic turbulent pipe flow may differ from that of the 
quasi-steady flow at oscillation frequencies of the order of the turbulent bursting 
frequency. That study was performed at very low Reynolds numbers. I n  the present 
study, experiments were conducted a t  a much larger mean Reynolds number, vz'z 
50000. Results a t  this Reynolds number can be directly compared with well- 
documented steady pipe flow data. Also, the apparatus, instrumentation and 
data-acquisition precedure have all been modified to improve the quality and scope 
of the experiments. 

Detailed measurements, including instantaneous velocities (using single-channel 
laser-Doppler anemometry) and instantaneous wall shear stress (using flush-mounted 
film gauge), have been obtained a t  two oscillation frequenciesf,, = 0.5 and 3.6 Hz. 
The higher frequency was large enough to interact with a significant part of the 
turbulent-energy spectrum. The lower frequency of oscillation can be considered to 
be an intermediate frequency a t  which the flow did not behave in a quasi-steady 
manner. In  both these experiments the amplitude of modulation was significant 
enough to yield useful results. I n  addition to these detailed experiments, less-detailed 
experiments have been conducted over a larger range of oscillation frequencies. Thus 
the present experimental programme has been designed to cover flow regimes of 
practical interest and to yield detailed information on the structure of turbulence. 
The main experimental results are presented in this paper and are compared with 
the predictions obtained from a finite-difference calculation procedure based on a 
quasi-steady turbulence closure model. In  Part 2 (Ramaprian & Tu 1983), these and 
additional detailed experimental results, along with the results of the numerical study, 
are examined to  explain the structure of unsteady turbulence. 

2. Experimental details 
2.1, The experimental apparatus 

The experimental apparatus is shown schematically in figure 1 .  The basic pipe-flow 
facility was originally designed and built for unsteady flow studies a t  transitional 
Reynolds numbers (see Ramaprian & Tu 1980). Some modifications were made on 
this system for the present study at high Reynolds numbers. 

Water from the constant-head tank flows down through an inlet pipe and a curved 
pipe, followed by a bell-shaped contraction nozzle to a 50 mm diameter x 10 m long 
copper pipe. The test section where velocity measurements were made is a Plexiglas 
tube, 0.3 m long and 50 mm in internal diameter D .  A rotating profiled sleeve driven 
by a regulated, geared d.c. motor controls the exit area for the water. The sleeve profile 
is designed to give two complete cycles of sinusoidal oscillation in discharge in one 
revolution. Details of the sleeve design and its drive system are described in 
Ramaprian & Tu (1982). Two sleeves were used - one designed for an amplitude of 
15% a t  f,, = 3.6 Hz and the other for an amplitude of 6 5 O / ,  a t  0.5 Hz. The 
performance of these sleeves is seen from figure 2, which shows the actual modulations 
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FIQURE 1.  Layout of the experimental apparatus: HT, head tank; 0, overflow pipe; TV, turning 
vanes; P, 50 mm diameter copper pipe; T, test section; E, Plexiglas enclosure; PS, profiled sleeve; 
M, geared motor; S, slotted brass cylinder; ES, exit slots; WT, weigh tank; ST, sump tank; CP, 
circulating pump; h x 4 m ; x = distance from first pressure tap. 

90' 180" 2 70' 360" 
0 

0 

FIGURE 2. Discharge modulation obtained with the two sleeves: V, 3.6 Hz; 
0, 0.5 Hz;  -, exact sine wave. 

in discharge (or equivalently in cross-sectional average velocity ( Urn)) obtained with 
these sleeve profiles. It is seen that the modulations are very nearly sinusoidal in both 
cases. 

2.2. In~~rumen~a t ion  and calibration 

Wall static pressure P, distribution along the pipe in steady flow was measured using 
the static pressure taps and an inverted U-tube water manometer. Pressure 
measurements were not made in unsteady flow owing to instrumentation difficulties. 
The time-averaged flow rate and hence the time-mean cross-sectional average velocity 
urn (with an uncertainty of less than 0.5 %) was measured using the weigh tank and 
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a stop watch. Instantaneous velocity in the axial direction was measured using 
frequency-shifted laser-Doppler anemometry (LDA). Owing to  the finite length of the 
measuring-volume, which is of the order of 1.6 mm in the radial direction, there is 
an uncertainty in the determination of the effective distance y from the wall. In  order 
to reduce this difficulty and ensure consistency, the ‘zero’ of the traverse and hence 
the effective measurement location were fixed by matching the discharge computed 
from the integration of the velocity profiles with the discharge measured using the 
weigh tank. The surface shear stress 7, was measured using a DISA constant- 
temperature hot-wire anemometer and a flush-mounted quartz-coated film probe. An 
overheat ratio of 1.05 was used. The gauge was calibrated in situ in steady flow a t  
several Reynolds numbers immediately before and after its use in the unsteady flow. 
The details of instrumentation and calibration are given in Ramaprian & Tu (1982). 

2.3.  Ensemble averaging and dejinitions 
An ensemble-averaging procedure was used in the present study for the analysis of 
unsteady turbulent flow. This procedure is identical with that used in the earlier work 
(Ramaprian & Tu 1980). In  this procedure, any instantaneous quantity @ (@ 
representing the longitudinal velocity U or the radial velocity V )  a t  time t ,  a t  a radial 
location r ,  and a phase position 8 in the oscillation cycle is written as 

@(r, 8,  t )  = 3 ( r )  + @Jr, 8 )  + #( r ,  8,  t )  

= (@) ( r ,  6) + # ( r ,  8, t ) ,  (1) 

where 8 is the (long) time-mean quantity or v, (@) is the deterministic 
(ensemble-averaged) quantity ( U >  or ( V ) ,  DP is the purely periodic part Up or V,, 
and $ is the turbulent (random) quantity, u or v. Note that v, Vp and ( V )  are 
zero in the fully developed periodic pipe flow. The r.m.s. ensemble-averaged values 
uh and vh of turbulent velocity fluctuations are defined as 

#;V3 6) = (($‘P, 8, t ) ) ) t  = [((W-, 8, t ) - ( @ ) ( r ,  8)>’)14 (2) 

and the ensemble-averaged ‘Reynolds shear stress ’ can be conceptually defined as 

- ( u v ) ( r , o )  = - [ ( { ~ ~ ( r , 8 , t ) - ( U ) ( r , 8 ) > ~ ~ ( r , e , t ) - (  V ) ( r ,8 ) } ) ]  

= -I(( V(r ,  8 ,  t )  - ( W ( r ,  6) )  W ,  8, t))I. (3) 

The conventional r.m.s. turbulent intensities u’ and v’ (on long-time-average basis) 
are defined as 

and the conventional Reynolds shear stress is defined as 

- 1 2n 
- uv = - - < u w ) ( T ,  8 )  d8. 

27c s, (5) 

The (long) time-mean, ensemble-averaged and turbulent components mentioned 
above were obtained from the instantaneous values using a digital data-acquisition 
and processing scheme. Taking advantage of the periodic nature of the flow, ensemble 
averages were obtained by treating successive cycles as independent realizations. 
Hence instantaneous values @ obtained a t  identical phase positions 8 in a large 
number of cycles were averaged to obtain (@) and hence 3, QP and #;. A total of 
1000 cycles were used in this ensemble or ‘phase-averaging’ procedure. Details are 
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provided in Ramaprian & Tu (1982). A similar procedure was used to obtain the 
ensemble average (7w)(B) and the time-mean 7, values of the wall shear stress from 
the instantaneous output of the shear-stress gauge. Turbulent intensities were not 
computed in this case since there was doubt about the dynamic response of the 
gauge a t  high frequencies. 

Unfortunately, since a single-channel LDA was used in the present experiments, 
i t  was not possible to make direct measurements of the r.m.s. intensities uk ,  1)’ and 
the Reynolds shear stresses - ( u u )  and -=. However, i t  is possible (see Ramaprian 
& Tu 1980) to  compute (uv) (r ,O)  from the integral momentum equation, after 
expressing the pressure gradient in terms of the ensemble-averaged velocity ( U )  and 
wall shear stress (7,) in the following form: 

The right hand side of (6) was evaluated using measured velocity and wall-shear-stress 
data. The process required differentiation with respect to time and integration across 
the pipe, both of which were performed numerically on a computer. The velocity-time 
data were smoothed digitally in order to reduce the numerical noise in differentiation. 
The accuracy of the entire procedure has been established in connection with the 
earlier work of Ramaprian & Tu (1980). It is estimated that the values of (uv) 
obtained in this manner are accurate to 10 yo in the present cases. 

2.4. Experimental details 
Three series of experiments were performed. These are 

(i) steady-flow experiments a t  several Reynolds numbers (series 1 )  ; 
(ii) detailed unsteady-flow experiments a t  oscillation frequencies of 3.6 Hz and 

(iii) unsteady-flow experiments over a range of oscillation frequencies (series 3). 
Steady flow measurements were made for discharge, pressure drop and velocity 

distribution across the pipe a t  five Reynolds numbers Re, namely 20700, 38860, 
49420, 7 1  790 and 79800. The Reynolds-number range studied in these experiments 
corresponds roughly to the extreme values of Reynolds number reached during an 
oscillation cycle in the unsteady flow experiments. Some of these experiments were 
repeated several times. The scatter in the results was less than 1 % for mean velocity 
and less than 5 yo for turbulent intensity. 

The pressure-drop measurements confirmed the validity of the Blasius friction 
formula for the friction factor h : 

0.5 Hz (series 2); 

h = 0.4265Re-i. (7 )  

This fact was made use of in the quick calibration of the shear-stress gauge since the 
gauge can be calibrated by simply measuring the discharge of various operating 
conditions. 

In  the second series of experiments, the flow at a mean Reynolds number of 5 x lo4 
was oscillated a t  the desired frequency (3.6 Hz/0.5 Hz) using the appropriate sleeve 
for each frequency. The higher frequency of 3.6 Hz roughly corresponds to the 
turbulent bursting frequency fb in the mean flow, estimated from the relation 
tJm/f,,B = 5 suggested (for boundary layers) by Rao, Narashimha & Badri Narayanan 
(1971). The lower frequency of 0.5 Hz can be considered to  be an ‘intermediate’ 
frequency. The third series of experiments and their results are described in Part 2. 

Velocity measurements were made a t  about 20 points across the pipe. Data were 
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sampled and collected two hundred times per sleeve revolution (or one hundred times 
per oscillation cycle) over 1000 cycles. These data were later processed for obtaining 
the distributions of 0, Up, ub and u’ across the pipe. The first set of experiments (at 
3.6 Hz) were repeated several times to determine the repeatability of the results. The 
scatter in the results was again found to be less than 1 % for mean quantity and less 
than 5 yo for turbulent intensity. Wall-shear-stress measurements were made 
independently of the velocity measurements and were obtained by sampling a t  100 
phase positions in a cycle and averaging over 300 cycles. From the instantaneous 
wall-shear-stress data, long-time averaged and ensemble-averaged values were 
obtained. 

3. Results and discussion 
3.1. General 

The experimental results will now be presented and discussed. I n  the interest of 
brevity, only typical figures are introduced. More details, including a complete set 
of tabulated experimental data, are available in Ramaprian & Tu (1982). The 
experimental results of series 2 are compared with the results obtained from a 
numerical solution of the ensemble-averaged unsteady equations of momentum and 
turbulent kinetic energy using a finite-difference method. The turbulence model used 
for closure of the equations is the ensemble-averaged version of the well-known 
Prandtl-energy model. The model is used in the form 

(4 ( q ” W  -exp ( -c:3(q2)b/v) l ,  (8) 

where (vt) is the ensemble-averaged eddy viscosity, ( q 2 )  is twice the ensemble- 
averaged turbulent kinetic energy ((uz) + (vz) + (w2)), v is the viscosity and c3 is a 
model constant. The lengthscale 1 is assumed to be independent of time, and is 
specified as 

4R 
30 

~ = - ( 1 - ~ ) 3 ,  (9) 

where R is the radius of the pipe and 7 = y / R .  The turbulence closure model as well 
as the model for the turbulent dissipation (with correction for low-Reynolds-number 
effects near the wall) and the model constants are all identical with those used by 
Acharya & Reynolds (1975). These physical models are, in fact, the same as are 
generally used for steady turbulent flows. One can thus regard the present approach 
as ‘ quasi-steady ’ modelling. The finite-difference grid was extended up to the wall, 
and hence there was no need to  use the so-called ‘wall-functions’ (see e.g. Patankar 
1967). The details of the calculation procedure are described in Ramaprian & Tu 
(1982). I n  the present paper and in Part 2 ,  only some results of the calculation which 
are relevant for comparison with the measurements are presented. 

3.2. Steady-Jow measurements 

Figure 3 shows the _ -  mean-velocity profiles across the pipe in the usual wall-layer 
coordinates U+( = U / U * )  and Y+( = y v * / v ) .  It is seeil that all the steady-flow profiles 
follow the universal log law reasonably well. Nevertheless, in the wall region 
( Y +  < 70) the measurements seem to be inaccurate. For example, they seem to be 
about 15-20 76 higher than the measurements of Laufer (1954) shown by the shaded 
lines. This is due to the sharp change of velocity across the LDA measuring volume, 
which has a length of about 1.6 mm in the radial direction. The measured values 
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FIGURE 3. Mean-velocity distributions in the wall-layer coordinates a t  various Reynolds numbers 
insteadypipeflow: x , R e  = 79800; 0 , 7 1 7 9 0 ; ~ , 4 9 4 2 0 ; ~ , 3 8 8 6 0 ; ~ , 2 0 7 0 0 ;  ////,dataofLaufer 
(1954) a t  Re = 50000; -, U+ = 2.44111 I’++5.5. 

therefore actually represent an average over this length. This is a shortcoming with 
the use of LDA near the wall in the present experiments. Hence in the region Y+ < 70 
the present measurements can be considered to have uncertainties of about 20 yo or 
higher. The distributions of the longitudinal turbulent intensity u’ were also obtained 
a t  various Reynolds numbers. It was found that the data at all Reynolds numbers 
except the lowest, namely Re = 20700, were in good agreement with the data of 
Laufer (1954). The experiments were repeated several times and the data were found 
to be reproducible within a scatter of 5 yo. These data can be used for comparison 
with those corresponding to truly periodic flows at finite oscillation frequencies. 

3.3. Quasi-steady-$ow results 
3.3.1. General 

The steady-flow results described in $3.2 can also be regarded as results obtained 
in periodic flow a t  an infinitely low frequency of imposed oscillation. Such an 
unsteady flow will be called quasi-steady flow. In  such a flow, all the flow properties 
such as mean velocity, turbulence intensity and wall shear stress at any phase position 
0 during the oscillation cycle will be equal to the corresponding properties in steady 
flow a t  the same instantaneous Reynolds number. By averaging the results for steady 
flow at several Reynolds numbers in the appropriate range, one can recover the 
information on time-averaged flow properties for quasi-steady flow with a given 
amplitude of modulation. Because of nonlinear effects this average will not strictly 
be equal to the flow properties a t  the average Reynolds number of the quasi-steady 
flow. The difference between the two may become significant a t  large amplitudes of 
modulation. If one has to study the effect of imposed periodicity a t  aJinite frequency, 
one has to compare the actual unsteady-flow results with the corresponding results 
for a hypothetical quasi-steady $ow of the same amplitude and same mean Reynolds 
number and not with the results for steady flow a t  the same average Reynolds 
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number. This point has been consistently ignored by all research workers so far. While, 
in many cases, this has not been serious since the amplitudes of modulation were very 
small, there have been a few cases (where large amplitudes were studied) where 
ignoring of this aspect cannot be justified. I n  this section, some of the results for 
quasi-steady flow are developed from steady-flow results. 

3.3.2. Time-mean wall shear stress in quasi-steady jlow 

As mentioned earlier, Blasius' formula in the form of (7)  is valid for steady flow 
in the Reynolds-number range of the present study, as confirmed by pressure-drop 
measurements. The magnitude of the wall shear stress is thus given by 

Let us assume that the cross-sectional average velocity varies with time according 
to 

where yum represents the relative amplitude of oscillation of (Urn) .  If the flow is 
oscillating a t  infinitely small frequency, (7)  can be assumed to be valid at every 
instant. Substituting (11)  into (7 )  and averaging over one period of oscillation, one 
gets the time-mean wall shear stress 'i, as 

where represents the wall shear stress a t  time-mean Reynolds number 
Re( = UrnD/v), and T represents the time period of one cycle ( = l/fo,, f,, being the 
oscillation frequency). The quantity g,, which is a function of yum, has values of about 
1.02 and 1.15 respectively for modulation amplitudes of 15 yo and 64 yo used in the 
present unsteady-flow experiments. 

3.3.3. The log law for the time-mean quasi-steady flow 

It is also interesting to perform the same analysis for the well-known universal log 
law. As already shown in figure 3, the steady-flow measurements follow this law 
reasonably well over the Reynolds-number range 20 000-70000. Thus, for quasi-steady 
oscillation in this range of Reynolds numbers, we assume 

where A and B are the same (universal) constants as in steady flow (namely A = 2.44, 
B = 5 . 5 ) .  

Integrating (13) over a complete cycle using Blasius' friction formula (7) and (12), 
we get' 

-= u [ d l n ( e y . ) + B ] &  

u* 
= A [In ( ~ Q , ) ~ ' ~ ~ ~ *  exp {(A- 91 g!? 1) z}] + B 

= ,4 In Y+++B, 
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FIGURE 4. Time-mean velocity profiles in the wall-layer coordinates. (a )  Conventional coordinates 
ll+ 21s. P+: A, 3.6 Hz (yum = 15%): 0, 0.5 Hz (yvm = 64y0); ---, quasi-steady flow with 
yum = 30% (14);----,quasi-steadyflowwithyum = 60% (14);-, U+ = 2.44111 I"t +5.5 .  ( b )  
Modified coordinates IT+ us. P++: A, 3.6 Hz; 0, 0.5 Hz; -, U+ = 2.44ln Y+++5.5.  

where 

g --s 1 2n (l+y,,coswt)Bdt, 
2 - 2 n T  

The time-averaged log law for quasi-steady periodic flow is therefore displaced 
vertically from the universal log law for steady flow by the amount 

and its slope is also changed by a factor of l /gl  gi. This is seen from figure 4, where 
typical results are shown for two hypothetical quasi-steady flows of amplitudes 30 
and 60 04. Therefore, for describing the mean velocity distribution in time-averaged 
wall-layer coordinates, i t  is necessary to use Y++ (defined by (14)) instead of the usual 
Y+( = yU*/v) ,  in order to remove the amplitude effect. 

3.3.4. Time-mean velocity profile in quasi-steady $ow 
Since the velocity profile in pipe flow is Reynolds-number dependent, the time-mean 

velocity profile in quasi-steady flow will be different from that in steady flow a t  the 
mean Reynolds number. The time-mean velocity profile u ( y )  in quasi-steady flow a t  
a prescribed amplitude can be calculated by averaging the profiles U ( r ,  Re) obtained 
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FIGURE 5 .  Time-mean velocity profiles in unsteady and quasi-steady flows at'& x 49400: 0 , 3 . 6  Hz 
(yrr,  = 150;); a, 0.5 Hz (yr,, = 649,); ---, quasi-steady flow (yum = 3006); -, quasi-steady 
flow (yum = 600/,). The velocity profile in steady flow a t  the time-mean Reynolds number is 
indist,inguishable from the dashed line. 

experimentally in steady flow at  different Reynolds numbers over the complete range 
of Reynolds numbers as 

- Reniax 

U ( r )  = __ U(y, Re)dRe, (17) 
ARe Remln 

where ARe = Remax-Remln is the range of the Reynolds number Re in steady flow. 
The time-mean velocity profiles obtained for two typical quasi-steady amplitudes, 

30 and 60 %, are shown in figure 5. The profile for 30 96 amplitude is practically 
indistinguishable from the profile a t  the time-mean Reynolds number. The time-mean 
velocity profile for 60 "4 amplitude, however, shows a slight change from the velocity 
profile a t  the mean Reynolds number. The time-mean velocity is seen to be slightly 
lower than in steady flow at mean Reynolds number, near the ccntreline. To 
rompensate for this, the quasi-steady flow should have a slightly larger velocity than 
the steady flow near thc wall. This was indced found to be true though it is not clearly 
seen in figure 5. 

3.3.5. Time-mean turbulence intensity in qiLasi-steady $OW 

periodic flow can be defined as 
Lastly, the time-mean value of the longitudinal turbulent intensity u' in quasi-steady 
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FIGURE 6. Time-mean distributions of the longitudinal turbulence intensity in unsteady and 
corresponding quasi-steadyflowsatRe = 49400: 0 , 3 . 6  HZ (yum = 15Oj,); A,0.5 Hz (yum = 6404); 
__- , quasi-steady flow (yu, = 3096); --, quasi-steady flow (yum = 60 yo); ---, steady flow at  
Re = 49400. 

where u; is the turbulence intensity a t  any Reynolds number Re. The time-mean 
distributions for two representative amplitudes, 30 and S O Y / , ,  as well as for steady 
flow at mean Reynolds number (0 yo amplitude), are shown in figure 6. These were 
obtained from the steady-flow data described earlier. Significant effect of the 
oscillation amplitude is seen especially between 0 and 30 7,. The amplitude effect 
decreases as the amplitude is further increased. Some of these differences can be 
suppressed if 0, is used as the scaling velocity instead of urn, but figure 6 is adequate 
to provide the basis for studying the effect of oscillation frequency in the periodic 
flow. 

3.4. Unsteady-$ow measurements 

3.4.1. Time-mean velocity distribution 
Figure 5 also shows the distribution of the time-average velocity uacross the pipe 

for the two periodic flows a t  oscillation frequencies f o s  = 3.6 Hz and f,, = 0.5 Hz 
respectively, so that these can be compared with the time-mean velocity profile for 
quasi-steady flow of corresponding amplitude in each case. It is observed that the 
time-mean velocity in the unsteady flow does show a difference from that in 
quasi-steady flow at both the frequencies. At f o s  = 3.6 Hz (with amplitude 15 yo) the 
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time-mean velocity in unsteady flow is higher by about 5 yo near the centreline when 
compared to that in the corresponding quasi-steady flow. For 0.5 Hz the difference 
is smaller, yet is still higher than quasi-steady velocity near the centreline. A 
corresponding decrease in the velocity relative to the quasi-steady mean velocity can 
be seen in the region near the wall. Again the contrast is more clearly seen at  the 
oscillation frequency of 3.6 Hz, which is of the same order as the turbulent bursting 
frequency. This finding is in agreement with the earlier work (Ramaprian & Tu 1980). 
It is particularly significant that it is in contradiction with most of the published 
results that  the authors are aware of. However, these latter experiments generally 
suffer from several limitations that have prevented the detection of the effect of 
imposed oscillations on the time-mean flow. For example, the oscillation frequencies 
used in these experiments were very low compared with the turbulent bursting 
frequency. Also the oscillation amplitude in many cases was too small (5 Yo or less) 
to produce differences distinguishable beyond the experimental scatter. In  some 
experiments, large amplitudes and high frequencies were studied (e.g. Mizushina et 
al. 1973, 1975; Rita et al. 1980). In  these experiments oscillation amplitudes of 40% 
or more and oscillation frequencies comparable to the bursting frequency have been 
studied. Significant interaction between imposed unsteadiness and the turbulence 
structure can be expected to have been present in these experiments. However, 
quantitative study of the time-mean velocity was not made by Mizushina et al., even 
though they seem to have had the necessary data. The data of Rita et al. do, in fact, 
seem to show small but definite effect of oscillation on the time-mean velocity. These 
authors, however, stated that the time-mean velocity of the unsteady flow agreed 
with that corresponding to steady flow at the mean Reynolds number, a statement 
which cannot be correct (as already shown in the previous section) since the amplitude 
of oscillation in their study was as high as 50 %. 

To summarize, it can be stated that there is definite evidence from the present 
experiments as well as from the earlier experiments of Ramaprian & Tu (1980) that, 
at interactive frequencies of oscillation and large enough amplitudes, the time-mean 
velocity profile in periodic flow is affected by the imposed unsteadiness and differs 
slightly from that corresponding to a quasi-steady flow with the same amplitude of 
modulation. 

Figure 4 (a )  also shows the time-mean velocity distributions in the wall-layer 
coordinates (U+ us. Y + )  for the two periodic flows studied and for the quasi-steady 
flows corresponding to each case. Significant differences are seen among the four 
profiles with respect to the existence of a semilogarithmic velocity distribution in the 
fully turbulent wall region. Figure 4 ( b )  shows these distributions plotted in the 
modified wall-layer coordinates U+ and Y++ of (14). I n  this figure the effect of 
oscillation amplitude is removed, and the full line represents the quasi-steady periodic 
flow a t  all amplitudes. The two sets of experimental data show the effect of the 
frequency of oscillation. It is seen that the time-mean velocity does not follow the 
universal log law for either of the two oscillation frequencies. No particular trend is 
recognizable in the relationship of the distortion of the velocity profile to the 
oscillation frequency. In  any case, the present observations do not support the 
observations/assumptions of many previous investigators (e.g. Binder & Kueny 
1982 ; Cousteix, Houdeville & Javelle 1980) that the universal log law is valid in 
unsteady flow. The present observation also indicates that use of the universal log-law 
assumption for the measurement of wall shear stress by the above authors or the use 
of quasi-steady wall functions (as was done by Cousteix et al.) in the prediction of 
unsteady turbulent boundary layers are not justified. The observation of a universal 
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log law by Binder & Kueny in the periodic flow is presumably due to a combination 
of reasons, namely a very low amplitude of oscillation (less then 5 % ) ,  use of the 
log-law assumption to determine g* and experimental errors and scatter being 
indistinguishable from weak trends. 

The time-mean velocity distributions measured in the present experiments are 
compared in figures 7(a), (b) with the predictions obtained from the numerical 
analysis. As already mentioned, numerical calculations were performed using, in each 
case, the exact pressure-gradient variation with time corresponding to the particular 
experiment. First, it  is seen that there is a slight difference between the unsteady flow 
predictions and the quasi-steady flow. A careful examination indicates that this 
difference is almost independent of the oscillation frequency of the unsteady flow. 
It was, in fact, found to  be present in the predictions for steady pipe flow also (see 
ltamaprian & Tu 1982). It is therefore intrinsic to the method and the model since 
the model constants have been chosen directly as used by Acharya & Reynolds (1975) 
without making any effort to fine-tune them. 



Fully developed periodic turbulent pipe $OW. Part 1 45 

The predicted distribution is, however, seen to  be different from the experimental 
measurement at 3.6 Hz but not significantly different from the measured distribution 
a t  0.5 Hz. Figure 7 ( a )  shows that, specifically a t  3.6 Hz, the measured velocity is 
larger than predicted by about 5 yo near the centreline of the pipe. An opposite trend 
is indicated near the wall, as expected. However, because of the relatively larger 
uncertainty in the LDA measurements very near the wall (say Y+ < 70), i t  is safer 
to restrict the comparisons to the region Y+ > 70, where the accuracy of the 
measurement is equal to or better than 1 %. Based on comparisons in this region, one 
can conclude that the calculation method based on the assumed quasi-steady 
turbulence model predicts negligible effect of oscillation frequency on the time-mean 
flow and thus the predictions deviate from measurement especially a t  high or 
interactive oscillation frequencies. 

3.4.2. Time-mean turbulence intensity distribution 
Figure 6 also shows the distribution of time-mean turbulence intensity uf at  two 

frequencies in the unsteady flow. Comparing the unsteady-flow data with those of 
the quasi-steady flow a t  approximately similar amplitude, it is noticed that a t  3.6 Hz 
( 1: 15 amplitude) the distribution reasonably agrees with that in quasi-steady flow 
(30 yo amplitude) in the core region within the experimental accuracy of f 2 yo. Near 
the wall, however, the measured values seem to be slightly larger than in quasi-steady 
flow. Unfortunately quasi-steady data for yum = 15% were not obtained, but the 
present comparison is adequate to indicate the trends. At 0.5 Hz ( x 64 Oi0 amplitude), 
the unsteady flow exhibits nearly the same intensities as the quasi-steady flow in the 
region 0.1 < 7 < 0.6, but higher intensities than quasi steady flow for 7 > 0.6. The 
difference between the unsteady and quasi-steady flow in this case is about 10 o/o near 
the centreline, and is clearly much larger than the experimental uncertainties of 
- + 2.5 yo. Binder & Kueny (1981), based on their experimental data at high frequency 
of oscillation, concluded that turbulent intensity remains unchanged in unsteady 
flow. Their amplitude, however, was less than 5y0, and this made any change in 
intensities extremely hard to detect amidst their experimental scatter. Some of the 
experiments on oscillating turbulent boundary layers (Cousteix et al. 1981) at very 
low frequencies of oscillation also seem to have indicated negligible effect of oscillation 
on time-mean intensity. These authors have not, however, based their comparisons 
on the appropriate quasi-steady flow. 

3.4.3. Ensemble-averaged velocity distributions 
Figure 8 gives the distributions of ensemble-(phase-)averaged velocities ( t i )  across 

the pipe a t  several phase positions in one cycle. The phase angles are referred to the 
instant when the cross-sectional-average velocity attains the maximum value. 
Velocity distributions across the pipe a t  phase intervals of approximately 45' are 
presented in these figures. The normalizing velocity used is the time-mean cross- 
sectional-average velocity, 0,. Figures 8 (a ,  b)  show the measurements a t  3.6 Hz, and 
figures 8 ( c ,  d )  present the results for 0.5 Hz. For the sake of clarity, the deceleration 
(0 = 0'-180') and acceleration (8 = 180'-360') periods are shown separately. It can 
be seen that, at 3.6 Hz, the velocity profiles across most of the pipe look similar to 
one another a t  all phase positions except for a shift upwards or downwards as the 
cross-sectional velocity varies with time. On the other hand, a t  0.5 Hz, the flow 
oscillation is seen to affect the shape of the velocity profiles across most of the pipe. 
The distortion is, in fact, large enough to cause inflexion points to appear in the 
profiles a t  some phase positions. Some of these velocity profilra took similar to the 
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velocity profiles in boundary-layer flows subjected to  an adverse pressure gradient. 
These inflexion points have been observed also in other experiments on unsteady 
internal flows mentioned earlier. 

Figure 8 also shows the comparison between the present experimental data and 
the predictions of the time-dependent calculation method. At 3.6 H z  (figures 8a, b) ,  
the predicted velocities during the entire cycle are slightly smaller than measurements 
in the central region while opposite results are observed for the wall region. At 0.5 Hz, 
the predicted velocities in the central region are smaller only in the phase interval 
45' 5 0 S 180'. Near the wall the predicted values are always smaller than measured. 
It is also significant to  note that calculations do not predict the experimentally 
observed inflexion profiles during any part of the cycle. Even after allowing for the 
possible errors in measurement near the wall, i t  can be said that the calculations are 
unable to predict correctly the variation of the velocity profiles with time at the lower 
oscillation frequency of 0.5 Hz. The apparently better prediction of the velocity 
profiles a t  the higher oscillation frequency is due to the confinement of oscillation 
effects to a relatively thin 'Stokes-like' layer a t  the high frequency. In  fact, it  can 
be expected that any turbulence model will produce good agreement in this region. 
This is because, a t  such a high frequency, turbulence modelling becomes less 
important in the core region where the inertia and pressure-gradient terms nearly 
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balance each other while the shear term is practically negligible. At intermediate or 
lower frequencies, however, the shear-stress term plays a somewhat more significant 
role, and hence proper turbulence modelling is required for the correct prediction of 
the flow in the central part of the pipe also. 

Near the wall, the influence of the shear stress is important at all frequencies, and 
this fact enhances the importance of using the correct model. In  the present numerical 
model the eddy viscosity is scaled with the instantaneous turbulent kinetic energy 
and hence can vary with time. Since the dynamics of the turbulent structure is 
accounted for (to some extent), the present model is seen to perform reasonably well. 
However, the prediction is still not very accurate in the wall region, indicating the 
inadequacy of the modelling based on the quasi-steady assumption. 

3.4.4. Wall shear stress 

The measured wall-shear-stress variations a t  the two oscillation frequencies are 
shown in figure 9. The noticeable kink in the variation of -(7w) at 3.6 Hz (figure 
9 a )  is somewhat hard to explain. Since this kink does not occur a t  the minimum value, 
i t  cannot be attributed to  the possible existence of backflow near the wall. Also, the 
minimum value is still considerably larger than zero, and no sign of reverse flow is 
indicated. In  fact, this measurement was repeated several times taking all necessary 
precautions. The repetitions confirmed the accuracy of the measurement. The 
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variation of the turbulent intensity during the cycle, which was independently 
obtained from LDA measurements, also indicated the presence of such a kink. The 
time-mean value of the wall shear stress is found to be about 6 %  higher than that 
of the corresponding quasi-steady flow of the same amplitude. This indicates that, 
a t  high frequencies, the time-mean velocity gradient at the wall is larger in the 
unsteady flow than in quasi-steady flow, This agrees with the authors’ previous 
findings (Ramaprian & Tu 1980). If one combines this result with that of figure 5, 
namely that time-mean velocity is smaller than the quasi-steady value in the wall 
region, one is led to suspect that an inflexion point exists in the time-mean velocity 
profile very close to the wall. Such an inflexion point was indeed observed in the 
measurements of Ramaprian & Tu (1980). I n  that experiment, which was at a mean 
Reynolds number of 2100 and in which the oscillation frequency was 1.75 Hz, the 
inflexion point occurred sufficiently far from the wall, so that i t  could be detected 
directly by the LDA measurements. In  the present study, the profile distortions a t  
3.6 Hz occur very much closer to the wall (at distances say of the order of 1 mm) 
because of the combination of higher Reynolds number and larger oscillation 
frequencies. In  this region, LDA measurement are not very accurate. However, a 
study of figure 5 with the knowledge that measured velocities a t  the first two or three 
points nearest to the wall may in fact be even ‘higher ’ than actual, will indicate the 
strong probability of an inflexion point in the velocity profile for the 3.6 Hz 
experiment. I n  any case, the independent wall-stress measurement indicates the 
existence of the inflexion point. At the oscillation frequency of 0.5 Hz (figure 9 b ) ,  the 
phasewise variation of wall shear stress exhibits a slight distortion. This is a 
large-amplitude effect brought about by nonlinearity (power-law dependence of wall 
shear stress on velocity). The time-mean wall shear stress in unsteady flow, however, 
increases by less than 1 yo relative to  that of the corresponding quasi-steady flow, and 
hence the increase cannot be seen in the figure. It was already mentioned that the 
effect of oscillation on the time-mean velocity profile was also insignificant a t  this 
frequency. Since the effects on velocity and wall shear stress are both small, i t  is not 
possible to reach any conclusions regarding the existence or otherwise of an inflexion 
point in the time-mean velocity profile. It is very clear though that inflexion points 
are present in the ensemble-averaged velocity profiles. 

Figures 9(a, b )  also show the comparison between the measured wall shear stress 
and that predicted by the calculations. It is seen that the general trends are correctly 
predicted at  each of the two oscillation frequencies. Quantitatively, however, 
discrepancies are observed. At 3.5 Hz, the measurements exhibit a kink as already 
mentioned and indicate a higher (by about 6 O h )  time-mean value than for quasi-steady 
flow. However, the predictions do not show any kink in the wall-shear-stress 
variation. Also, the predicted time-mean wall shear stress in unsteady flow is nearly 
equal to that in the quasi-steady flow. At 0.5 Hz the measured values are higher in 
the range of 45’ < 0 < 240’ and lower in the rest of the oscillation period compared 
with the predictions. The time-mean value of the measured wall shear stress is nearly 
equal (within 1 % )  to that predicted. Both prediction and measurement of the 
time-mean wall shear stress agree approximately with the time-mean value in quasi- 
steady flow with an amplitude of 6096. This value is much higher (by 15%) than 
that for the corresponding steady flow at the mean Reynolds number. This is due 
to the amplitude effect already discussed in $3.3.2. 

It is interesting to examine how the ensemble-averaged velocity in unsteady flow 
scales with the ensemble-averaged wall shear stress. Figure 10 shows the semilogar- 
ithmic plots of ( U )  in the wall-layer coordinates for several phase positions in the 
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oscillation cycle. Kinematic viscosity and ensemble-averaged wall shear stress are 
used in forming the wall-layer variables. Again, acceleration and deceleration regimes 
are shown separately for clarity. It is obvious that the velocity profiles do not follow 
a logarithmic law. This is not very surprising, since the velocity and wall shear stress 
experience different phase shifts. At 3.6 Hz, the departure from universal logarithmic 
law is strong during a part of the cycle. This part corresponds to the period in which 
the kink appears in the wall shear stress. Over the remainder of the cycle, the profiles 
seem to follow a logarithmic distribution though not the universal log law. This is 
due to the fact that  the effect of the oscillation is confined to a thin layer a t  this 
frequency, and hence strong phase variations in velocity are confined to this layer. 
The flow in the rest of the pipe essentially performs a solid-body-like oscillation with 
no significant phase variations across this region. This will be seen more clearly from 
the phase-distribution plots discussed in Part 2. Thus the effect on each of the 
ensemble velocity distributions (in the wall-layer coordinates) across most of the pipe 
is that  corresponding to the use of an inappropriate wall shear stress for obtaining 
the scaling velocity ( U , )  and hence a change in the slope and intercept of the 
semilogarithmic line. This is indeed what is observed in figure 10(a) .  At an 
intermediate frequency the departure from the log law is even more drastic. Also, 
as seen from figures 10 ( c ,  d ) ,  the effect of oscillation extends over a large part of the 
pipe. There is a global distortion of the ensemble-averaged velocity profiles in 
wall-layer coordinates due to the varying phase shift between the local flow and the 
wall shear stress. The use of the wall shear stress as a scaling parameter loses all 
significance in this flow. It must be noted, however, that, if the frequency of oscillation 
is reduced to near-quasi-steady values, the ensemble-averaged velocity profiles can 
be expected to exhibit the universal log law. 

Binder & Kueny (1981) reported that the ensemble-averaged velocity profiles in 
their experiment at high frequency of oscillation were found to  follow the log law. 
This observation must be attributed to the difficulty of detecting small departures 
a t  the very small oscillation amplitude (5 yo) studied by them. 

3.4.5. Ensemble-averaged turbulence intensity 
The cross-sectional distributions of the ensemble-averaged turbulence intensity ub 

are shown in figure 11 for 8 phase positions in the cycle for each frequency studied. 
The time-mean turbulent intensity u’ (in figure 6) is reproduced here again for ease 
of comparison. At high frequency (figures 11 a,  b )  the ensemble-averaged turbulence- 
intensity variation is limited only to the region 7 < 0.3. It is seen clearly that the 
distribution of uk in the region r,~ > 0.3 remains unchanged in time while the 
ensemble-averaged velocity pulsates, indicating a ‘frozen structure ’. This result is 
in agreement with the available data on periodic flows a t  high oscillation frequency. 
On the other hand, a t  the intermediate frequency of 0.5 Hz (figures l l a ,  d )  the 
distributions vary significantly in shape all across the pipe, the profiles often crossing 
over one another a t  different locations. This indicates that the imposed unsteadiness 
spreads over the entire pipe cross-section. It may be noted that these crossovers will 
not occur in quasi-steady flow. The intensity of turbulence increases in the wall region 
with increase in the cross-sectional average velocity (that is during the acceleration 
part of the cycle), and decreases during the deceleration part of the cycle. However, 
the outer flow shows the opposite behaviour. It is thus seen that the flow in the central 
part of the pipe is least turbulent when the discharge is maximum. It is also seen 
that during a certain part of the cycle, say 8 = 135’-225O, the turbulence intensity 
has a maximum value in the. neighbourhood of 3 = 0.5. Around the point of maximum 
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77 

discharge the variation of ub across the pipe is a maximum, while around the point of 
minimum discharge the variation of u; across the pipe is a minimum. The ensemble 
distributions do not bear any resemblance either to the time-mean distribution or 
to the time-mean distribution in the quasi-steady flow (figure 6). I n  fact the crossing 
over of the u; profiles shows that the flow a t  0.5 Hz does not even qualitatively behave 
like a quasi-steady flow. 

Typical cross-plots of ensemble-averaged turbulent intensities showing the phase- 
wise distribution of uk are given for different locations across the pipe in figure 12. I n  
figure 12(a),  showing the results for 3.6 Hz, it can be seen that near the wall ub 
shows periodic variations. However, within a short distance from the wall the amp- 
litude of variation of ub decreases, and eventually the distribution appears almost 
like a straight line, indicating very clearly the frozen structure of ub. It is also seen 
that uk shows large changes in phase as 7 increases, before attaining the frozen 
structure a t  larger values of 7. On the other hand, a t  0.5 Hz, the data for which are 
shown in figure 12 (b) ,  the cyclic variation of uk extends across the whole pipe. The 
large amplitude of variation is due to the large amplitude of velocity variation (64 yo). 
It is also seen that near the wall the variation of uk is approximately sinusoidal with 
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a small phase lag with respect to the cross-sectional-average velocity. This phase lag 
increases with distance from the wall. At the same time, the profile gets more and 
more distorted with increase of distance from the wall. Kinks very similar to that 
observed in the wall-shear-stress variation at 3.6 Hz begin to appear in these profiles 
also. Finally, in the core region, the variation shows substantial distortion from a 
sine wave. In fact it is seen that ub remains practically constant at  its minimum value 
over a significant part of the cycle. This part roughly corresponds to the interval 
0 = 270°4050. Thus the turbulent structure is by no means quasi-steady, even 
qualitatively. The present observations are generally in conformity with those of 
Mizushina et al. (1973,1975). Both the investigations have clearly demonstrated that, 
at  the frequencies studied, the turbulent structure cannot be associated with the 
corresponding ensemble-averaged velocity field in any simple manner. 

3.4.6. Ensemble-averaged Reynolds shear stress 
Figure 13 shows the Reynolds-shear-stress distribution across the pipe at  various 

phase positions during the deceleration and acceleration periods of an oscillation 
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cycle. At the high frequency of 3.6 Hz, the Reynolds shear stress (uv)/@, near the 
wall varies widely (from about 5 x lop4 a t  8 = 270' to about 40 x a t  8 = 135'). 
This can be compared with the variation from 25 x of the wall shear 
stress-(T,)/p@, (shown in figure 9).  The large difference between the wall shear 
stress and the Reynolds shear stress near the wall is due to the large acceleration or 
retardation of the fluid. Owing to the phase difference between wall shear stress and 
the acceleration, the local shear stress in the near-wall region can be very different 
from the wall shear stress. The distributions of the ensemble-averaged shear stress 
across the pipe behave differently from those of the turbulence intensity ub. 
Predictions of the shear-stress distributions are also shown in these figures. It is seen 
that calculation indicates a small amplitude of fluctuation of the shear stress near 
the wall (7 < 0.4) and practically a frozen structure in the core region. 

A study of the results for the 0.5 Hz experiments shown in figures 13(c, d )  indicates 
large variations of the shear-stress distribution all across the pipe. The shear-stress 
data are expected to be far more accurate for this experiment than at the higher 
frequency. The large amplitude of the shear stress is of course to be expected in view 
of the large amplitude of flow modulation in this case. Again, crossover profiles similar 
to those of u6 are observed in these figures also. In other words, large values of shear 
stress near the wall are associated with small values in the outer region and vice versa. 
Complete departure of the turbulence structure from that of the quasi-steady flow 
is obvious. Numerical predictions of this flow are also shown in the figures for 
comparison. Again large quantitative differences can be observed between prediction 
and experiment, with the model being able to predict only general trends. 

A better comparison between the predicted and measured structure of the 
turbulent shear stress as well as a better understanding of the behaviour of the shear 
stress is provided by the typical cross-plots of Reynolds-shear-stress distribution 
shown in figure 14. From figure 14(a),  corresponding to 3.6 Hz, i t  can be easily seen 
that the numerical model fails to capture the details of the shear-stress variation over 
the cycle, even though it seems to predict the average value for the cycle reasonably 
well. At the lower frequency of 0.5 Hz the model seems to predict the variations of 
the shear stress reasonably well, although with a phase shift. In  fact, the apparent 
poor performance of the calculation in figure 13 ( b )  is now seen to be essentially caused 
by a phase difference between prediction and measurement. It thus appears that the 
quasi-steady model, which can predict the periodic flow very well a t  very low 
frequencies, is unable to follow the changes during the cycle as the oscillation 
frequency reaches moderately large values. Eventually, at high frequencies, the model 
breaks down completely and indicates a frozen structure during the entire cycle. 

Figure 14 also indicates very clearly that kinks begin to develop in the phasewise 
distributions of the measured Reynolds stress a t  both the frequencies. These kinks 
resemble those observed in the wall shear stress and turbulence intensity distributions. 
These are presumably due to the nonlinear interaction between the turbulent 
structure and the imposed oscillations. This interaction seems to be present even at 
0.5 Hz. 

to 35 x 

4. Conclusions 
The results presented so far for fully developed periodic pipe flow a t  Reynolds 

number of 50000 have further confirmed the conclusions of the earlier work of 
Ramaprian & Tu (1980) on similar flows a t  transitional Reynolds numbers that the 
time-mean flow in the pipe is indeed affected by imposed oscillation when the 
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FIGURE 14. Phasewise distributions of the Reynolds shear stress and comparison with predictions: 
( a ) f o s  = 3.6 Hz; ( b ) f o ,  = 0.5 Hz; *, experiment; -, prediction. 

oscillation frequency approaches the characteristic frequency of turbulence. The 
present velocity and wall-shear-stress data also suggest the existence of an inflexion 
point in the time-mean velocity profile very near the wall. Further, neither the 
time-mean nor the ensemble-averaged velocity follows the universal log law a t  the 
frequencies studied. At the lower frequency studied, the ensemble-averaged velocity 
exhibits strongly distorted profiles with inflexion points. At the higher frequency, this 
distortion is confined to a thin region near the wall, and the rest of the distribution 
is smooth. The ensemble-averaged turbulence intensity ub and Reynolds shear stress 
(uv) are also significantly affected by unsteadiness. At the lower frequency these 
profiles are considerably distorted. The turbulent intensity remains 'frozen ' at a low 
value over nearly half the cycle at this frequency. At the higher frequency the 
turbulence intensity remains frozen throughout the cycle. Calculations using a 
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quasi-steady turbulence model such as the Prandtl-energy model predict negligible 
effect of unsteadiness on the time-mean flow. Further, the method is unable to follow 
the detailed turbulence history through the cycle even a t  the lower frequency, and, 
in fact, completely breaks down a t  the higher frequency. However, the prediction 
of the ensemble-averaged flow, especially in the outer region, improves a t  the high 
frequency. This is simply because of the negligible role played by turbulence in this 
flow. 
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